The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 points to differences in their role in mannan degradation.
نویسندگان
چکیده
beta-1,4-Mannanases (mannanases), which hydrolyse mannans and glucomannans, are located in glycoside hydrolase families (GHs) 5 and 26. To investigate whether there are fundamental differences in the molecular architecture and biochemical properties of GH5 and GH26 mannanases, four genes encoding these enzymes were isolated from Cellvibrio japonicus and the encoded glycoside hydrolases were characterized. The four genes, man5A, man5B, man5C and man26B, encode the mannanases Man5A, Man5B, Man5C and Man26B, respectively. Man26B consists of an N-terminal signal peptide linked via an extended serine-rich region to a GH26 catalytic domain. Man5A, Man5B and Man5C contain GH5 catalytic domains and non-catalytic carbohydrate-binding modules (CBMs) belonging to families 2a, 5 and 10; Man5C in addition contains a module defined as X4 of unknown function. The family 10 and 2a CBMs bound to crystalline cellulose and ivory nut crystalline mannan, displaying very similar properties to the corresponding family 10 and 2a CBMs from Cellvibrio cellulases and xylanases. CBM5 bound weakly to these crystalline polysaccharides. The catalytic domains of Man5A, Man5B and Man26B hydrolysed galactomannan and glucomannan, but displayed no activity against crystalline mannan or cellulosic substrates. Although Man5C was less active against glucomannan and galactomannan than the other mannanases, it did attack crystalline ivory nut mannan. All the enzymes exhibited classic endo-activity producing a mixture of oligosaccharides during the initial phase of the reaction, although their mode of action against manno-oligosaccharides and glucomannan indicated differences in the topology of the respective substrate-binding sites. This report points to a different role for GH5 and GH26 mannanases from C. japonicus. We propose that as the GH5 enzymes contain CBMs that bind crystalline polysaccharides, these enzymes are likely to target mannans that are integral to the plant cell wall, while GH26 mannanases, which lack CBMs and rapidly release mannose from polysaccharides and oligosaccharides, target the storage polysaccharide galactomannan and manno-oligosaccharides.
منابع مشابه
Galactomannan Catabolism Conferred by a Polysaccharide Utilization Locus of Bacteroides ovatus
A recently identified polysaccharide utilization locus (PUL) from Bacteroides ovatus ATCC 8483 is transcriptionally up-regulated during growth on galacto- and glucomannans. It encodes two glycoside hydrolase family 26 (GH26) β-mannanases, BoMan26A and BoMan26B, and a GH36 α-galactosidase, BoGal36A. The PUL also includes two glycan-binding proteins, confirmed by β-mannan affinity electrophoresis...
متن کاملIn vitro and in vivo characterization of three Cellvibrio japonicus glycoside hydrolase family 5 members reveals potent xyloglucan backbone-cleaving functions
Background Xyloglucan (XyG) is a ubiquitous and fundamental polysaccharide of plant cell walls. Due to its structural complexity, XyG requires a combination of backbone-cleaving and sidechain-debranching enzymes for complete deconstruction into its component monosaccharides. The soil saprophyte Cellvibrio japonicus has emerged as a genetically tractable model system to study biomass saccharific...
متن کاملA mannanase, ManA, of the polycentric anaerobic fungus Orpinomyces sp. strain PC-2 has carbohydrate binding and docking modules.
The anaerobic fungus Orpinomyces sp. strain PC-2 produces a broad spectrum of glycoside hydrolases, most of which are components of a high molecular mass cellulosomal complex. Here we report about a cDNA (manA) having 1924 bp isolated from the fungus and found to encode a polypeptide of 579 amino acid residues. Analysis of the deduced sequence revealed that it had a mannanase catalytic module, ...
متن کاملEvidence for temporal regulation of the two Pseudomonas cellulosa xylanases belonging to glycoside hydrolase family 11.
Pseudomonas cellulosa is a highly efficient xylan-degrading bacterium. Genes encoding five xylanases, and several accessory enzymes, which remove the various side chains that decorate the xylan backbone, have been isolated from the pseudomonad and characterized. The xylanase genes consist of xyn10A, xyn10B, xyn10C, xyn10D, and xyn11A, which encode Xyn10A, Xyn10B, Xyn10C, Xyn10D, and Xyn11A, res...
متن کاملTailored catalysts for plant cell-wall degradation: redesigning the exo/endo preference of Cellvibrio japonicus arabinanase 43A.
Enzymes acting on polymeric substrates are frequently classified as exo or endo, reflecting their preference for, or ignorance of, polymer chain ends. Most biotechnological applications, especially in the field of polysaccharide degradation, require either endo- or exo-acting hydrolases, or they harness the essential synergy between these two modes of action. Here, we have used genomic data in ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Biochemical journal
دوره 371 Pt 3 شماره
صفحات -
تاریخ انتشار 2003